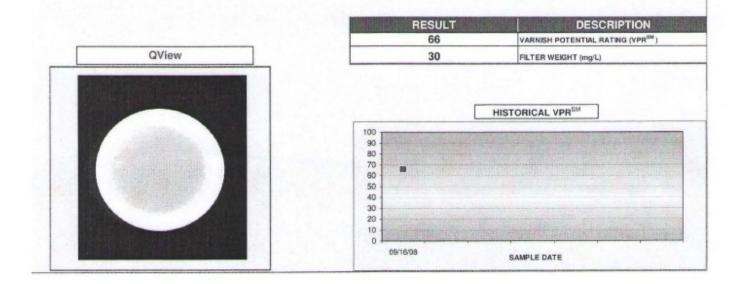
Case Study in Power Generation Industry

Trinity Refining & Safety Systems

Oil & Fuel Solutions

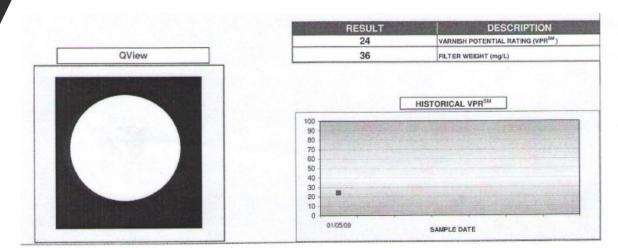


The Situation

- This case study comes from a "peaking station" at a large power plant
- The turbine at issue is a GE frame size 6 gas powered turbine
 - The turbine maintains temperatures, 140*F
 - The capacity of the turbine is 3700 gallons
- Moisture and varnish accumulate to cause the following problems:
 - reduced heat transfer
 - sticking valves
 - equipment failure

Initial Oil Sample

- The varnish potential rating was measured at 66 per the Quantitative Spetrophotometric Analysis, used by Analysts, Inc.
- The level of varnish is found to be high
- The .45 micron filter patch visually showed some darkening


Test

- A Filter System was added to the turbine oil sump
- The filter was run continuously for 4 weeks without interrupting operation of the turbine.
- After 4 weeks a new sample of oil was taken to evaluate the effectiveness of the filter...

The Results

- The sample was measured at the same lab with the same process as the "before" sample
- This sample measured 24 on the varnish potential rating, in the normal range
- The .45 micron filter patch showed very little visually

Test Results Summary

- The filter was able to be used without any down time to the turbine operation
- Varnish was removed quickly and efficiently using two filter sets
- Removal of the varnish will extend the service life of the oil and keep the equipment operating at high levels of cleanliness
- The cost to clean and maintain the oil was less than 20% of the cost of changing the oil in the system

Cost Savings Results

- Without filters
 - Oil change every 8 years
 - 3700 gallons x \$6 per gallon = \$22,200
 - Clean-up of varnish build-up requires 2 days of downtime, cleaning chemicals and flushing. The cost of this clean-up is \$60,000 to \$80,000
- With filters
 - Oil change every 12 to 18 years
 - Initial cost of filtration system = \$12,890
 - Annual cost of replacement filters and electricity = \$2,000 / year
 - Cleaning and flushing not required
 - Total Savings over 8 years = (\$22,200 + \$60,000) (\$12,890 + \$2,000 x 8 years) = \$49,310
 - Total Savings over 16 years = (\$44,400 + \$120,000)
 (\$12,890 + \$2,000 x 16 years) = \$119,510
 - Downtime cost was not even factored in!

Overall Take Away

- Maintaining oil is far more efficient than changing oil
 - Keeping the oil clean keeps the machinery operating at peak performance
 - Downtime is eliminated
 - Costly cleaning is not required
- The cost to clean and maintain the oil was less than 20% of the cost of changing the oil in the system